Abstract

AbstractImplantation of erbium (Er) into GaN is useful in creating selected areas to emit at the green, yellow and infrared wavelengths. Enhanced erbium activation is obtained when erbium is implanted into porous GaN formed by electrochemical etching than into as‐grown GaN. This is due to the increase in surface areas for light extraction and the availability of more free surfaces to accommodate strain when it is annealed. Furnace annealing at 1100 °C for 30 mins in nitrogen gives rise to higher band‐edge photoluminescence intensity. Apart from the host GaN phonon modes, we have also observed disorder‐induced lattice vibrations at 170, 200 and 350‐365 cm–1 from Er‐implanted porous GaN. The E2 (high) mode of GaN also shifts towards higher energy at higher annealing temperatures, indicative of more erbium occupying the VGa site (ionic radii of Er > Ga) and hence increasing the compressive stress in the GaN crystal lattice. The prominent defect‐induced local vibrational modes in Er‐doped nanoporous GaN are also observed in ultraviolet resonant Raman scattering. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call