Abstract
Luminescent and structural characteristics of SiO2 layers exposed to double implantation by Si+ and C+ ions in order to synthesize nanosized silicon carbide inclusions have been investigated by the photoluminescence, electron spin resonance, transmission electron microscopy, and electron spectroscopy methods. It is shown that the irradiation of SiO2 layers containing preliminary synthesized silicon nanocrystals by carbon ions is accompanied by quenching the nanocrystal-related photoluminescence at 700–750 nm and by the enhancement of light emission from oxygen-deficient centers in oxide in the range of 350–700 nm. Subsequent annealing at 1000 or 1100°C results in the healing of defects and, correspondingly, in the weakening of the related photoluminescence peaks and also recovers in part the photoluminescence of silicon nanocrystals if the carbon dose is less than the silicon dose and results in the intensive white luminescence if the carbon and silicon doses are equal. This luminescence is characterized by three bands at ∼400, ∼500, and ∼625 nm, which are related to the SiC, C, and Si phase inclusions, respectively. The presence of these phases has been confirmed by electron spectroscopy, the carbon precipitates have the sp 3 bond hybridization. The nanosized amorphous inclusions in the Si+ + C+ implanted and annealed SiO2 layer have been revealed by high-resolution transmission electron microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.