Abstract
Chlorine is a common undesirable impurity in synthetic SiO2 glass for ultraviolet optics and optical fibers. It is usually incorporated into glass as bound Si–Cl groups or interstitial Cl2 molecules. We report a high-sensitivity detection of Cl2 in amorphous SiO2 (a-SiO2) by photoluminescence (PL) and also by Raman spectroscopy. The Cl2 PL emission band at 1.22 eV (1016 nm) appears at T < 160 K and shows a characteristic vibronic progression with separations ≈(520–540) cm–1 and an average lifetime of ≈5 ms at 13 K. Its excitation spectrum coincides with the shape of the 3.78 eV (328 nm) optical absorption band of Cl2 in a-SiO2, corresponding to the X → A 1Πu transition to repulsive excited state. Direct X → a singlet-to-triplet excitation was also observed at 2.33 eV (532 nm). Cl2 PL may serve as a sensitive and selective tool for monitoring Cl impurities and their reactions in a-SiO2. A Raman band of Cl2 is found at 546 cm–1. Cl2 photodissociation at energies up to 4.66 eV (266 nm) was not detected, poin...
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have