Abstract

A series of NaGd1-x-ySiO4: y Dy3+ - x Eu3+ phosphors were synthesized by a high-temperature solid-phase method. The optimal doping ion concentration of Dy3+ ions for this phosphor was determined to be 1% from the emission spectra. The energy transfer between Dy3+ and Eu3+ ions at 351 nm was investigated by photoluminescence spectra and fluorescence decay curves. At the excitation wavelengths of 275 nm, 351 nm, 366 nm, and 394 nm, a change from yellow to white to red light can be realized by adjusting the doping concentration of Eu/Dy ions. Particularly, by testing the temperature-dependent fluorescence spectrum of the phosphor, it can be found that the luminous intensity of the phosphor is as high as 96% when 394 nm excitation is employed at 413 K. It was the maximum at this temperature comparing with other phosphors as far as we know. The color coordinate values show that the NaGd1-x-ySiO4: x Dy3+ - y Eu3+ phosphors are very close to the white light color coordinates (x = 0.33, y = 0.33) under 351 nm excitation. Meanwhile, the correlated color temperature is between 5062 - 7104 K. These results indicate that this phosphor is a promising candidate for high-quality WLED.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call