Abstract
Autonomous execution of tasks by unmanned aerial vehicles (UAVs) relies heavily on object detection. However, object detection in most images presents challenges such as complex backgrounds, small targets, and obstructions. Additionally, the limited computing speed and memory of the UAV processor affects the accuracy of conventional object detection algorithms. This paper proposes LUD-You Only Look Once (YOLO), a small and lightweight object detection algorithm for UAVs based on YOLOv8. The proposed algorithm introduces a new multiscale feature fusion mode that solves the degradation in feature propagation and interaction through the introduction of upsampling in the feature pyramid network and the progressive feature pyramid network. The application of the dynamic sparse attention mechanism in the Cf2 module achieves flexible computing allocation and content awareness. Furthermore, the proposed model is optimized to be sparse and lightweight, making it possible to deploy on UAV edge devices. Finally, the effectiveness and superiority of LUD-YOLO were verified on the VisDrone2019 and UAVDT datasets. The results of ablation and comparison experiments show that compared with the original algorithm, LUDY-N and LUDY-S have shown excellent performance in various evaluation indexes, indicating that the proposed improvement strategies make the model have better robustness and generalization. Moreover, compared with multiple other popular competitors, the proposed improvement strategies enable LUD-YOLO to have the best overall performance, providing an effective solution for UAVs object detection while balancing model size and detection accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have