Abstract

Seminal plasma protects spermatozoa from the detrimental effects of reactive oxygen species such as hydrogen peroxide. We investigated the lucigenin-dependent chemiluminescence in cell-free seminal plasma from andrological patients. The seminal plasma was separated from cells by centrifugation. In all seminal plasmas studied lucigenin-dependent chemiluminescence (LCL) was detected. The LCL showed a strong pH-dependence. The signal was stable if samples were stored at +4°C for up to 4 days or up to 8 days at -80°C. Filtration of the samples (0.45 and 0.22 μm pore size) did not lower their luminescence. The addition of superoxide dismutase (SOD) and ascorbic acid oxidase (AAO) lowered LCL nearly to baseline values while trolox and desferal showed moderate effect, whereas allopurinol had no effect. Electron paramagnetic resonance spectroscopy demonstrated ascorbyl radicals in seminal plasma. Physiological concentrations of ascorbic acid yielded SOD-inhibitable lucigenin-chemiluminescence. The nitroblue-tetrazolium assay showed that ascorbic acid in buffer solution produced formazan. Superoxide-anion radicals were not detected in seminal plasma by the spin-trap DEPMPO due to their low steady state concentration. It is concluded that in seminal plasma ascorbate reacts with molecular oxygen yielding ascorbyl radicals and superoxide anion. If lucigenin is added to seminal plasma, reducing substances present, such as ascorbate, reduce lucigenin to the corresponding radical; this radical reacts with molecular oxygen and also forms O2-2. So LCL in human seminal plasma results from the autoxidation of ascorbate and the oxidation of the reduced lucigenin. While the physiological relevance of the former mechanism is unknown, the latter is an artifact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.