Abstract
The aim of this study was to assess the interaction of endogenous ascorbate with iron and copper ions in aerobic seminal plasma. The rate of ascorbate consumption was measured by high-performance liquid chromatography and by the concentration of its primary oxidation product, ascorbyl radical (Asc.-) detected by electron spin resonance spectroscopy. The modification in the levels of Asc.- was used to investigate non-invasively and in real time whether metal ions, either present in this fluid or exogenously added, were catalytically active. The Asc.- was detected in seminal plasma as well as in whole semen of all subjects and was unaffected by superoxide dismutase, catalase or metal chelators. These findings and the rapid decrease of Asc.- under nitrogen suggest that Asc.- is probably a result of non-metal-catalysed air auto-oxidation, a reaction generating low levels of reactive oxygen species. Loading of seminal plasma with either Fe2+ or Fe3+ up to a concentration of 50 microM did not increase, or increased only slightly, the rate of ascorbate oxidation. Taking into consideration the concentrations of iron-binding proteins in this fluid, these results suggest that seminal plasma possesses a 'physiological ligand(s)' able to maintain iron ions in a catalytically inactive form. Our results indicate that citrate, which is present in seminal plasma at very high concentrations (10-25 mM), is responsible for the inhibition of iron-dependent catalysis. On the contrary, the loss of ascorbate and the levels of Asc.- were significantly increased by the addition of physiologically relevant concentrations (1 microM) of copper ions (Cu2+ but especially Cu+). We suggest that seminal plasma is potentially exposed to copper-mediated oxidation, a finding that could be of importance in situations of increased copper-loading such as in some pathological conditions or in smoking subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.