Abstract
BackgroundMechanical chest compression (CC) is currently suggested to deliver sustained high‐quality CC in a moving ambulance. This study compared the hemodynamic support provided by a mechanical piston device or manual CC during ambulance transport in a porcine model of cardiopulmonary resuscitation.Methods and ResultsIn a simulated urban ambulance transport, 16 pigs in cardiac arrest were randomized to 18 minutes of mechanical CC with the LUCAS (n=8) or manual CC (n=8). ECG, arterial and right atrial pressure, together with end‐tidal CO2 and transthoracic impedance curve were continuously recorded. Arterial lactate was assessed during cardiopulmonary resuscitation and after resuscitation. During the initial 3 minutes of cardiopulmonary resuscitation, the ambulance was stationary, while then proceeded along a predefined itinerary. When the ambulance was stationary, CC‐generated hemodynamics were equivalent in the 2 groups. However, during ambulance transport, arterial and coronary perfusion pressure, and end‐tidal CO2 were significantly higher with mechanical CC compared with manual CC (coronary perfusion pressure: 43±4 versus 18±4 mmHg; end‐tidal CO2: 31±2 versus 19±2 mmHg, P<0.01 at 18 minutes). During cardiopulmonary resuscitation, arterial lactate was lower with mechanical CC compared with manual CC (6.6±0.4 versus 8.2±0.5 mmol/L, P<0.01). During transport, mechanical CC showed greater constancy compared with the manual CC, as represented by a higher CC fraction and a lower transthoracic impedance curve variability (P<0.01). All animals in the mechanical CC group and 6 (75%) in the manual one were successfully resuscitated.ConclusionsThis model adds evidence in favor of the use of mechanical devices to provide ongoing high‐quality CC and tissue perfusion during ambulance transport.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have