Abstract
Abstract Several studies have successfully demonstrated the friction-reduction and anti-wear properties of graphene on the nano- and micro-scales, but our understanding of the tribological behaviour of graphene on the macro-scale remains very limited. Accordingly, this study presents the macro-tribological behaviour of a graphene-containing oil in the lubrication of steel/steel contacts and DLC/DLC contacts. We show that graphene platelets, as additives to the base oil, can, especially in the boundary-lubrication regime, decrease the friction in the DLC/DLC contacts by up to 50%, as well as in the steel/steel contacts by up to 44%. The predominant lubrication mechanism of the graphene platelets was shown to be the formation of a protective tribofilm for both types of surfaces. The effects of the concentration of graphene (0–5 wt.%) and the lubrication regimes on the formation of the tribofilm are also investigated and explained with a schematic 2-D contact model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.