Abstract

Ionic liquids are expected to be used as a new lubricants and lubricant additives because of their unique properties. However, cyano-based ionic liquids have exhibited poor lubricating property with steel/steel contacts. We evaluated the lubricating properties of cyano-based ionic liquids with steel/hard materials contacts. TiO2, Al2O3, and tetrahedral amorphous carbon (ta-C) DLC were used as hard materials. Six types of ionic liquids, as combination of two types of cations ([EMIM], [BMPL]) and three types of cyanide anions ([DCN], [TCC] and [TCB]), were selected. In sliding tests of steel/TiO2 and steel/Al2O3 lubricated with [EMIM][DCN], [BMPL][DCN], [EMIM][TCC], [BMPL][TCC] exhibited low friction coefficients of less than 0.1. In addition, steel/Al2O3 and steel/ta-C DLC lubricated with [BMPL][TCB] exhibited very low friction coefficients less than 0.05. On the other hand, high friction coefficients were observed at steel/TiO2 and steel/Al2O3 contacts lubricated with [EMIM][TCB] and steel/ta-C DLC contact lubricated with [EMIM] cation group. Peeling of the ta-C DLC was observed when [EMIM] cation group was used. ToF-SIMS analysis indicated that the anion was adsorbed on the worn surfaces in the case of low frictional conditions. However, both ions were hardly observed in the case of high frictional conditions. It is considered that the ionic liquids underwent tribo-decomposition on the worn surfaces at low friction coefficient. To evaluate the degree of tribo-decomposition, Thermogravimetric analysis (TGA) was used. TGA results indicated that [EMIM][TCB], which exhibited high friction coefficient, had the most highest stability among all ionic liquids. Low stability ionic liquids, however, showed a tendency for low friction coefficient. These results suggest that lubricating properties are related to the stability of ionic liquids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call