Abstract

The replenishment of a lubricant on a carbon coated disc was characterized through theoretical modeling employing experimentally acquired diffusion coefficient data. To quantify the reflow behaviour of a lubricant film, a parameter, the critical reflow time, was defined as the time to replenish a depleted hole of 1 /spl mu/m diameter in a 2 nm thick lubricant film. The results based on solving 2D diffusion equations showed that the critical reflow time is a strong function of the endgroup polarity and molecular weight of a lubricant, as well as the H and N content in the carbon film. Based on these results, design criteria have been provided for enhanced wear durability of magnetic media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call