Abstract

This paper describes the effect of ultra-thin liquid lubricant films on air bearing dynamics and flyability of nano-spacing flying head sliders in hard disk drives. The dynamics of a slider was monitored using Acoustic Emission (AE) and Laser Doppler Vibrometer (LDV). The disks with lubricant on one half of disk surface thicker than the other half as well as with uniform thickness lubricant were used to investigate the interactions between the slider and lubricant film experimentally. As a result, it was found that the flying height at which the slider-lubricant contact occurs depends on the lubricant film thickness and it increases as the lubricant film thickness increases. Its flying height is also dependent on the mobile lubricant film thickness under the condition that the total lubricant film thicknesses are the same and the lubricant bonded ratios are different. It increases as the mobile lubricant film thickness increases. The slider-lubricant contact flying height based on the theory for capillary waves is in good agreement with the experimental results. Regard to air bearing dynamics due to the slider-lubricant interactions, it also depends on the mobile lubricant thickness as well as the total lubricant film thickness. However, we should carry out more experimental and theoretical studies in order to confirm and verify these experimental results. In addition, the effect of nonuniform lubricant film thickness on head/disk interface dynamics has been studied. It was found that the lubricant film thickness nonuniformity caused by the slider-lubricant interactions could be observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call