Abstract
We have performed x-ray specular reflectivity and scattering measurements of thermally slumped glass substrates on x-ray diffractometers utilizing a rotating anode x-ray source at the Danish Space Research Institute (DSRI) and synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) optics Bending Magnet beamline. In addition, we tested depth graded W/Si multilayer-coated slumped glass using x-ray specular reflectivity measurements at 8.048 keV and 28 keV and energy-dispersive measurements in the 20-50 keV rang at a double-axis diffractometer at the Orsted Laboratory, University of Copenhagen. The thermally slumped glass substrates will be used to fabricate the hard x-ray grazing incidence optics for the High-Energy Focusing Telescope. We compared the measurements to the SODART- mirrors from the SRG telescope mission program. The surface scatter measurement of the thermally slumped glass substrates yields Half Power Diameters (HPD's) of single- bounce mirrors of full-illuminated lengths of approximately 40 arcseconds for typical substrates and as low as approximately 10 arcseconds for the best substrates, whereas the SODART mirrors yields HPD's of approximately 80 arcseconds with very little variation. Both free-standing glass substrates and prototype mounted and multilayer-coated optics were tested. The result demonstrate that the surface scatter contribution, plus any contribution from the mounting procedure, to the Half Power Diameter from a telescope using the slumped glass optics will be in the subarcminute range.In addition we measured low surface microroughness, yielding high reflectivity, from the glass substrates, as well as from the depth graded W/Si multilayer-coated glass.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have