Abstract
We investigate theoretically and experimentally the performance of linear and nonlinear vibration absorbers to suppress high-amplitude vibrations of twin-tailed fighter aircraft when subjected to a primary resonance excitation. The tail section used in the experiments is a 1/16 dynamically scaled model fo the F-15 tail assembly. Both techniques (linear and nonlinear) are based on introducing an absorber and coupling it with the tails through a sensor and an actuator, where the control signals ae either linear or quadratic. For both cases, we develop the equations governing the response of the closed-loop system and use the method of multiple scales to obtain an approximate solution. We investigated both control strategies by studying their steady-state characteristics. In addition, we compare the power requirements of both techniques and show that the linear tuned vibration absorber uses less power than the nonlinear absorber.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have