Abstract

The wavelet transform provides a new method for signal/image analysis where high frequency components are studied with finer time resolution and low frequency components with coarser time resolution. It decomposes a scanned signal into localized contributions for multiscale analysis. This paper presents a systolic architecture which can compute the discrete wavelet transform (DWT) in an efficient manner. When the number of data points windowed in the input is N equals 2m, our DWT systolic architecture is composed of m layers of identical 1-dimensional arrays, which compute the high-pass and the low-pass filtered components simultaneously. Input data string can enter and be processed 'on-the-fly' continuously at the rate of one data point per clock period T. The computation time for a large number of successive DWT problems is NT per DWT.© (1992) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.