Abstract

Rapid isothermal processing (RIP) based on incoherent sources of light is emerging as a reduced thermal budget (product of processing time and temperature) processing technique. As compared to a stand-alone annealing unit, the integration of RIP with other processing units leading to integrated RIP systems is very attractive for the next generation of devices and circuits. From cost and performance point of view, the integrated rapid isothermal processing of these devices offers several advantages compared to their ex-situ rapid isothermal annealed and furnace annealed counterparts. The authors have used an integrated RIP system for the in- situ rapid isothermal surface cleaning of InP and GaAs substrates and in-situ metallization of InP and GaAs Schottky diodes. As compared to ex-situ annealing, in-situ rapid isothermal cleaning of InP and GaAs surfaces prior to metallization followed by in-situ annealing results in improved electrical characteristics. In addition to the well established short time processing feature of RIP, the dominance of radiation spectrum from vacuum ultraviolet (VUV) region to visible region can provide lower temperature processing compared to furnace processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.