Abstract

This paper presents the current status of alignment techniques for a new class of liquid crystalline material being developed for both passive optical filtering/polarizing and latching electro-optic applications. This new glassy liquid crystal (GLC) material has the unique property of being electro-optic and fully latching. That is, in one state, the material has the properties of a conventional nematic liquid crystal, capable of being aligned with either an electric or magnetic field; while in its other state, it is an optical quality solid that maintains the molecular alignment set while in the fluid state. Molecular alignment of nematic GLC films is a critical technology necessary to develop high-performance, novel latching devices. The alignment of the nematic pendant component of GLCs directly correlates to the optical contrast, switching speed (turn-on time), and decay speed (turn-off time) of an active latching device. There has been little prior research conducted to assess conventional LC alignment techniques for use with GLCs. The processing and effectiveness of multiple alignment techniques will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call