Abstract

Physical, material science and technological aspects (adequate material and substrate choice, different physical effects and limitations of modern simulation methods) are discussed. Analysis of modern microelectronics and optoelectronics development trends shows that rigid boundaries between microoelectronics and optoelectronics are smearing. Wide materials range previously used only in optoelectronics ( A<sup>3</sup> B<sup>5</sup> - , A<sup>2</sup> B<sup>6</sup> -, A<sup>4</sup> B<sup>4</sup> - compounds, their sold alloys, diamond, organic material etc.) are now of interest for LSI designers also. Although wide range of different substrates types (organic and inorganic, single crystalline and amorphous, rigid and flexible) are now used in optoelectronics optically transparent and electrically insulating substrates are preferable for integrated optoelectronics. One type of such substrates namely sapphire is of essential practical interest now because silicon on sapphire (SOS) structures are used for LSI implementation and gallium nitride and its alloys on sapphire stwctures (GNS) are used for super bright LEDs, LDs and photodetectors fabrication. Special attention is paid to optical properties of organic structures as very promising media both for integrated optoelectronics and microelectronics. Different physical effects (band structure, quantum, disorder, strain, carrier heating effects) as well as limitations of modern simulation methods are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call