Abstract

Laser manipulation of the size and shape of metal nanoparticles generated by self-assembly of atoms on dielectric substrates is discussed. Techniques are presented that allow one to prepare nanoparticles with a narrow size distribution and with well-defined shape by using laser irradiation after and during particle growth. Optical spectroscopy of supported nanoparticles is demonstrated to be a very versatile tool for characterizing the particles in addition to direct imaging by scanning probe microscopy. We also show that laser manipulation of the size or shape of nanoparticles can be used to determine the homogeneous linewidth of surface plasmon excitation and thus examine the ultrafast decay time of this collective electron oscillation in nanoparticles. Prospects for future experiments in this field and applications of monodisperse nanoparticles are outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.