Abstract
While the nanocatalysis field has undergone an explosive growth during the past decade, there have been very few studies in the area of shape-dependent catalysis and the effect of the catalytic process on the shape and size of transition metal nanoparticles as well as their recycling potential. Metal nanoparticles of different shapes have different crystallographic facets and have different fraction of surface atoms on their corners and edges, which makes it interesting to study the effect of metal nanoparticle shape on the catalytic activity of various organic and inorganic reactions. Transition metal nanoparticles are attractive to use as catalysts due to their high surface-to-volume ratio compared to bulk catalytic materials, but their surface atoms could be so active that changes in the size and shape of the nanoparticles could occur during the course of their catalytic function, which could also affect their recycling potential. In this Feature Article, we review our work on the effect of the shape of the colloidal nanocatalyst on the catalytic activity as well as the effect of the catalytic process on the shape and size of the colloidal transition metal nanocatalysts and their recycling potential. These studies provide important clues on the mechanism of the reactions we studied and also can be very useful in the process of designing better catalysts in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.