Abstract

Begin Fiber Bragg Gratings (FBGs) are basic elements in DWDM technology. They are produced by UV illumination. UV light sources have been steadily improved to meet the demands of FBG writing industry. We want to characterize some parameters of interest of a simple, line-narrowed excimer laser source, its improvements and contribution to interferometric non-proximity FBG writing. Parameters of interest to be discussed are the temporal and spatial coherence length, the beam stability and spectrum control of produced FBG. With a temporal coherence length of ~ 5 mm it is possible to utilize cost efficient excimer laser technology for the interferometric non-proximity FBG writing process. Correspondingly the line-narrowed Excimer laser can replace expensive frequency doubled Argon ion lasers driving interferometric FBG writing set-ups in production and R & D. Beyond it FBGs for sensor applications play an important role. They have the potential for the measurement of strain / deformation and temperature with applications including monitoring of highways, bridges, aerospace components and chemical and biological sensors. We want to discuss the requirements for excimer lasers for this application: The spatial coherence length, beam profile, pointing and energy stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.