Abstract
A model of particle absorption coefficients is presented as a function of chlorophyll concentration. The model has been derived from remote sensing reflectance and chlorophyll concentration of CalCOFI bio-optical data set, using a radiance model. Variance in absorption coefficient for a given chlorophyll concentration can be reduced by introducing site- dependent particle backscattering coefficients, average of which is assumed to follow Morel's backscattering model. With an empirical algorithm for estimating the absorption by dissolved organic matter, we separate the absorption by particles from the total absorption. Through a simple quality control, statistical regression gives the parameterization of particle absorption. By applying the derived model to a semi- analytical inversion algorithm, we demonstrate the proposed model could be used to retrieve in-water parameters such as chlorophyll concentration, absorption by colored dissolved organic matter and particle backscattering coefficients.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have