Abstract

The exhaustive search process leads to a computational burden and therefore increases the complexity in the fractal image coding system. This is the main drawback to employ fractals for practical image compression applications. In this paper, an image compression scheme based on the fractal block coding and the simplified finite-state algorithm is proposed. For the finite-state algorithm that has been successfully employed in the vector quantization (VQ) technique, the state codebook (equivalent to the domain pool in the fractal image coding) is determined by a specific next-state function. In this research, we use the position of the range block to decide its domain pool. Therefore, a confined domain pool is limited in the neighboring region of the range block and thus the search process is simplified and faster. During the computer simulations, we consider two partition types, the single-level (8 X 8 blocks) and two-level (8 X 8 and 4 X 4 blocks) conditions. The simulation results show that the proposed scheme greatly reduces the computational complexity and improves the system performance.© (1995) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.