Abstract

Continuous very thin (2.5-3.0 nm) and thin (16-18 nm) ytterbium suicide films with some pinhole density (3•107- 1•108 cm-2) have been formed on Si(111) by solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE) growth methods on templates. The stoichiometric ytterbium suicide (YbSi2) formation has shown in SPE grown films by AES and EELS data. Very thin Yb suicide films grown by RDE method had the silicon enrichment in YbSi2 suicide composition. The analysis of LEED data and AFM imaging has shown that ytterbium suicide films had non-oriented blocks with the polycrystalline structure. The analysis of scanning region length dependencies of the root mean square roughness deviation (σR(L)) for grown suicide films has shown that the formation of ytterbium suicide in SPE and RDE growth methods is determined by the surface diffusion of Yb atoms during the three-dimensional growth process. Optical functions (n, k, α, e1, e2, Im e1-1, neff, eeff) of ytterbium silicide films grown on Si(1 1 1) have been calculated from transmittance and reflectance spectra in the energy range of 0.1-6.2 eV. Two nearly discrete absorption bands have been observed in the electronic structure of Yb silicide films with different composition, which connected with interband transitions on divalent and trivalent Yb states. It was established that the reflection coefficient minimum in R-spectra at energies higher 4.2 eV corresponds to the state density minimum in Yb suicide between divalent and trivalent Yb states. It was shown from optical data that Yb silicide films have the semi-metallic properties with low state densities at energies less 0.4 eV and high state densities at 0.5-2.5 eV.© (2005) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call