Abstract
In this paper we propose a feature enhanced interpattern associative (FEIPA) optical neural network. The common part of the stored patterns is regarded as redundance and its contribution in the association process is discarded. Therefore, the output before thresholding is more uniform, and hence, it is easier for the thresholding performance and increases the iteration speed. Furthermore, the optical implementation is much easier because all the elements of the interconnection matrix are non-negative and unipolar. The theoretical description and the experimental results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.