Abstract

Resonance-enhanced multiphoton ionization and laser-induced fluorescence were used to obtain relative concentration measurements of six species in low-pressure stoichiometric hydrocarbon flame systems. Relative density profiles of O, H, OH, CH, HCO, and CH<SUB>3</SUB> were compared to model calculations for methane/oxygen, ethane/oxygen, and ethylene/oxygen flame systems. Good agreement between measured profiles and model predictions was found for the methane/oxygen system, allowing for the methane/oxygen system to be used as a standard of comparison by which relative concentration profiles of other hydrocarbon flame systems may be put on an absolute scale. With this approach, one finds that peak HCO densities in the ethane/oxygen and ethylene/oxygen systems appear to be over estimated by current model predictions of C<SUB>1</SUB> and C<SUB>2</SUB> chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call