Abstract

A system performance model is developed to predict the performance of a high-energy laser system taking into account the propagation through the beam control system and the atmosphere. The performance model essentially shows how the various subsystems, such as the laser device, intermediate transfer system, beam expander, target, etc., will interact with each other and how a closed-loop model for the atmospheric correction can be achieved. Such a model aids in the system design by identifying and optimizing the adaptive optic requirements for the laser beam cleanup and for the atmospheric compensation correction. The heart of such a model is the Perkin-Elmer Physical Optics Propagation (POP) code. The POP code has been successfully used in many high-energy laser programs. The general capabilities of the POP code and the performance model will be highlighted. Results from a test case using a chemical laser wavefront will also be presented.© (1983) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.