Abstract

Abstract : High energy laser (HEL) weapons are some of most challenging military applications in the future battle fields since the speed of light delivery enables the war fighter to engage very distant targets immediately. The issues of the technology on the HEL system include various types of high energy laser devices, beam control systems, atmospheric propagation, and target lethality. Among them, precision pointing of laser beam and high-bandwidth rejection of jitters produced by platform vibrations are one of the key technologies for the emerging fields of laser communications and HEL systems. HEL testbed has been developed to support the research environments on the precision beam control technology including acquisition, tracking, and pointing. The testbed incorporates optical table, two axis gimbal, high speed computers, and a variety of servo components, sensors, optical components, and software. In this report, system configuration and operation modes of the testbed are briefly introduced. The results of the experiments and integrated modeling from component to system level are described and discussed. Based on these results, new control algorithms are designed and it is shown that the algorithm can improve the pointing performance of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.