Abstract

This paper deals with the analog implementation of neocognitron based neural networks. All of Fukushima''s and related work on the neocognitron is based on digital computer simulations. To fully take advantage of the power of this network paradigm an analog electronic approach is proposed. We first implemented a 6-by-6 sensor network with discrete analog components and fixed weights. The network was given weight values to recognize the characters U L and F. These characters are recognized regardless of their location on the sensor and with various levels of distortion and noise. The network performance has also shown an excellent correlation with software simulation results. Next we implemented a variable weight network which can be trained to recognize simple patterns by means of self-organization. The adaptable weights were implemented with PETs configured as voltage-controlled resistors. To implement a variable weight there must be some type of " memory" to store the weight value and hold it while the value is reinforced or incremented. Two methods were evaluated: an analog sample-hold circuit and a digital storage scheme using binary counters. The latter is preferable for VLSI implementation because it uses standard components and does not require the use of capacitors. The analog design and implementation of these small-scale networks demonstrates the feasibility of implementing more complicated ANNs in electronic hardware. The circuits developed can also be designed for VLSI implementation. 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.