Abstract
AbstractWe introduce a highly efficient light visibility estimation method, called L-Tracing, for reflectance factorization on neural implicit surfaces. Light visibility is indispensable for modeling shadows and specular of high quality on object’s surface. For neural implicit representations, former methods of computing light visibility suffer from efficiency and quality drawbacks. L-Tracing leverages the distance meaning of the Signed Distance Function(SDF), and computes the light visibility of the solid object surface according to binary geometry occlusions. We prove the linear convergence of L-Tracing algorithm and give out the theoretical lower bound of tracing iteration. Based on L-Tracing, we propose a new surface reconstruction and reflectance factorization framework. Experiments show our framework performs nearly speedup on factorization, and achieves competitive albedo and relighting results with existing approaches.KeywordsSurface reflectance factorizationSphere tracingInverse rendering3D deep learning
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.