Abstract
Modeling appealing virtual scenes is an elaborate and time-consuming task, requiring not only training and experience, but also powerful modeling tools providing the desired functionality to the user. In this paper, we describe a modeling approach using signed distance functions as an underlying representation for objects, handling both conventional and complex surface manipulations. Scenes defined by signed distance functions can be stored compactly and rendered directly in real-time using sphere tracing. Hence, we are capable of providing an interactive application with immediate visual feedback for the artist, which is a crucial factor for the modeling process. Moreover, dealing with underlying mathematical operations is not necessary on the user level. We show that fundamental aspects of traditional modeling can be directly transferred to this novel kind of environment, resulting in an intuitive application behavior, and describe modeling operations which naturally benefit from implicit representations. We show modeling examples where signed distance functions are superior to explicit representations, but discuss the limitations of this approach as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.