Abstract

Metastable β-Ti alloys including Ti15Mo alloy are perspective candidates for use in medical applications. During thermal treatment Ti15Mo alloy undergoes various phase transformations. After solution treatment it contains metastable β-phase and ω-phase. During annealing the ω-phase partially dissolves as well as stable α-phase particles are formed. The solution treated Ti15Mo alloy was deformed by high pressure torsion (HPT) at room temperature. Significant grain refinement with grain size of ~100 nm was achieved even after 1/4 of HPT rotation. The effect of the ultra-fine grained (UFG) structure achieved by HPT on the phase transformations was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during in-situ heating. High density of lattice defects, dense network of grain boundaries as well as ongoing recovery and recrystallization upon heating significantly affected the phase transitions. Observation of the microstructure during in-situ heating in TEM revealed no representative changes in transparent part of the sample due to the “thin foil effect”.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call