Abstract

Magnetic Induction (MI) communication technique has shown great potentials in complex and RF-challenging environments, such as underground and underwater, due to its advantage over EM wave-based techniques in penetrating lossy medium. However, the transmission distance of MI techniques is limited since magnetic field attenuates very fast in the near field. To this end, this paper proposes Metamaterial-enhanced Magnetic Induction (M$^2$I) communication mechanism, where a MI coil antenna is enclosed by a metamaterial shell that can enhance the magnetic fields around the MI transceivers. As a result, the M$^2$I communication system can achieve tens of meters communication range by using pocket-sized antennas. In this paper, an analytical channel model is developed to explore the fundamentals of the M$^2$I mechanism, in the aspects of communication range and channel capacity, and the susceptibility to various hostile and complex environments. The theoretical model is validated through the finite element simulation software, Comsol Multiphysics. Proof-of-concept experiments are also conducted to validate the feasibility of M$^2$I.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call