Abstract
Graphene-NiO nanocomposites were prepared via a solvothermal method. The nanostructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM results indicated that NiO nanoplates distributed homogeneously on graphene sheets. The electrochemical properties of the samples as active anode materials for lithium-ion batteries were examined by constant current charge-discharge cycling. With graphene as conductive matrix, homogeneous distribution of NiO nanoplates can be ensured and volume changes of thenanocomposite during the charge and discharge processes can be accomodated effectively, which results in good electrochemical performance of the composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.