Abstract
Graphene-SnS2 nanocomposites were prepared via a solvothermal method with different loading of SnS2. The nanostructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD patterns revealed that hexagonal SnS2 was obtained. SEM and TEM results indicated that SnS2 particles distributed homogeneously on graphene sheets. The electrochemical properties of the samples as active anode materials for lithium-ion batteries were examined by constant current charge–discharge cycling. The composite with weight ratio between graphene and SnS2 of 1:4 had the highest rate capability among all the samples and its reversible capacity after 50 cycles was 351 mAh/g, which was much higher than that of the pure SnS2 (23 mAh/g). With graphene as conductive matrix, homogeneous distribution of SnS2 nanoparticles can be ensured and volume changes of the nanoparticles during the charge and discharge processes can be accomodated effectively, which results in good electrochemical performance of the composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.