Abstract

Chronic diabetic wounds present formidable challenges, marked by uncontrolled bacterial infections, prolonged inflammation, and impaired angiogenesis. The evolving landscape of photo-responsive antibacterial therapy holds great promise in addressing these multifaceted issues, with a particular focus on leveraging the distinctive properties of 2D heterojunction materials. In this investigation, we engineered composite sprayed hydrogels, seamlessly integrating Bi/MoS2 nano-heterojunctions. Capitalizing on the synergistic interplay between photocatalytic antibacterial and photothermal antibacterial mechanisms, the Bi/MoS2 heterojunction, guided by its localized surface plasmon resonance, demonstrated outstanding antibacterial efficacy within a mere 10-minute exposure to 808 nm near-infrared light. This accelerated sterilization both in vitro and in vivo, consequently expediting wound healing. The sprayed composite gel not only furnishes protective shielding for skin tissues but also fosters endothelial cell proliferation, vascularization, and angiogenesis. This safe and ultrafast sterilizing hydrogel presents immense potential for application in antimicrobial dressings, thereby offering a promising avenue for diabetic wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.