Abstract

Graph Neural Networks (GNNs) are widely utilized for graph data mining, attributable to their powerful feature representation ability. Yet, they are prone to adversarial attacks with only slight perturbations of input data, limiting their applicability to critical applications. Vulnerability analysis of GNNs is thus essential if more robust models are to be developed. To this end, a Layer-wise Relevance Propagation based Adversarial attacking (LRP2A) model is proposed11Data and code are available at https://github.com/duiyady/LRP2A.. Specifically, to facilitate applying LRP to the “black-box” victim model, we train a surrogate model based on a sophisticated re-weighting network. The LRP algorithm is then leveraged for unraveling “contributions” among the nodes in the downstream classification task. Furthermore, the graph adversarial attacking algorithm is intentionally designed to be both interpretable and efficient. Experimental results prove the effectiveness of the proposed attacking model on GNNs for node classification. Additionally, the adoption of LRP2A allows the choice of the adversarial attacking strategies on the GNN interpretable, which in turn can gain deeper insights on the GNN’s vulnerability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.