Abstract

A solution of the problem of optimal linear-quadratic (LQ) tracking and disturbance rejecting with invariant zeros on the unit circle of the plant is given, under a quite general assumption. For that purpose, we transform this problem to a problem of LQ control of an unstabilisable plant by augmentation, and then deal with weakly stabilising controls, defined as the controls such that the unstable modes of the closed-loop system are at most the unstabilisable modes of the augmented pair (A, B).Then we solve the transformed problem by the newly introduced minimal rank weakly stabilising solution of the most general discrete-time algebraic Riccati system (DARS), associated with the system given by matrix quadruple (A, B, C, D), with unstabilisable matrix pair (A, B).We show and illustrate by examples that there is a class of LQ tracking problems in the presence of disturbances, which cannot be solved by the existing methods, but can be solved by the introduced minimal rank weakly stabilising solution of the DARS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.