Abstract

Tracking control system based on linear quadratic (LQ) tracker is designed for a ducted-fan unmanned aerial vehicle (UAV) under full flight envelope including hover, transition, and cruise modes. To design the LQ tracker, a system matrix is augmented with a tracking error term. Then the control input can be calculated to solve a single Riccati equation, but the steady-state errors might still remain in this control system. In order to reduce the steady-state errors, a linear quadratic tracker with integrator (LQTI) is designed to add an integral term of tracking state in the state vector. Then the performance of the proposed controller is verified through waypoint navigation simulation under wind disturbance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.