Abstract

This brief presents an identification experiment performed on the coupled dynamics of the edgewise bending vibrations of the rotor blades and the in-plane motion of the drivetrain of three-bladed wind turbines. These dynamics vary with rotor speed, and are subject to periodic wind flow disturbances. This brief demonstrates that this time-varying behavior can be captured in a linear parameter-varying (LPV) model with the rotor speed as the scheduling signal, and with additional sinusoidal inputs that are used as basis functions for the periodic wind flow disturbances. By including these inputs, the predictor-based LPV subspace identification approach (LPV PBSIDopt) was tailored for wind turbine applications. Using this tailor-made approach, the LPV model is identified from data measured with the three-bladed Controls Advanced Research Turbine (CART3) at the National Renewable Energy Laboratory's National Wind Technology Center.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.