Abstract

In Part I of the current work [this issue], we have developed a numerical model for simulating the process of low-velocity impact damage in composite laminates using the finite element method (FEM). This FEM model based on the Mindlin plate element can describe various impact-induced damages and their mutual effects. Some new and effective techniques have also been put forward in that paper, which can significantly increase the computational efficiency. In the current paper, i.e. Part II of the two-part series on the study of impact of composites, we focus on the following two aspects: (a) verification of our numerical model through the comparison with other researchers' results; (b) investigation of the impact-induced damage in the laminated plates using the present numerical model. For the first aspect, some previous experimental data have been adopted for comparison to validate the present numerical model. For the second, we have mainly studied the effects on the impact damage in detail in such aspects as the size of target plate, the boundary conditions of target plate, impact velocity, impactor mass, etc. From these computations, the understanding of the low-velocity impact damage in laminates can be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call