Abstract

The giant-dielectric-constant material CaCu3Ti4O12 (CCTO) was synthesized via an organic solution containing stoichiometric amounts of the metal cations, which is done at lower temperature and shorter reaction time than the conventional solid-state reaction. A stable solution was prepared by dissolving calcium nitrate, copper nitrate, and tetrabutyl titanate in grain alcohol. CCTO powders, ceramics and thin films were synthesized via the solution. The phases, microstructures, and dielectric properties of samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and dielectric spectroscopy. XRD results identify both samples as single phase CCTO. The CCTO ceramics has a low-frequency permittivity of 3.5 × 104. The CCTO thin films has a low-frequency permittivity of 3.1 × 104. Both the CCTO ceramics and CCTO thin films exhibit two dielectric relaxations at room temperature. The low leakage current density of CCTO thin films shows that it is suitable for memory device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.