Abstract
Lanthanum (La) doped Cerium Oxide (CeO2) nanopowder was synthesized at a relatively lower temperature (70°C), without calcination in a simple, faster, and efficient way through sonochemical method. X-ray diffraction (XRD) results confirmed the formation of a cubic fluorite structure of nanocrystalline CeO2 and lattice deformation due to La-doping in CeO2. TEM analysis revealed that the size of La-doped CeO2 particles is in the range of 20−50 nm. In addition, selective area electron diffraction (SAED) and high-resolution TEM (HRTEM) analyses portrayed the nano-crystallinity, lattice fringe pattern, and d-spacing details of La-doped CeO2 powder. Lanthanum doping in CeO2 was further confirmed by a shift in Raman band towards the lower frequency (from 464 cm−1 to 457cm−1) along with peak intensity increase. Photoluminescence (PL) emission spectra showed that emission intensity of the La-doped CeO2 at 510 nm is increased due to oxygen vacancy mediated charge transfer. All these results confirm the successful doping of La in CeO2. The La-doped CeO2 powder possesses a high dielectric constant (εr) of 106 and a low dielectric loss (tan δ) of <0.4 % at 1 kHz. The La-doped CeO2 finds potential applications on developing devices in the field of a thin film capacitor, transistors, and solid oxide fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.