Abstract

The current work demonstrates a novel synthesis of different concentrations of La-doped (2, 4, and 6 wt %) CeO2 quantum dots (QDs) using a hydrothermal approach. This research aimed to examine the dye degradation efficiency, antibacterial activity, and in silico molecular docking analysis of La-doped CeO2 QDs. The structure, elemental composition, optical properties, d-spacing, and morphological features of QDs were examined using various methods. XRD spectra exhibited the cubic structure of CeO2, and the crystallinity was suppressed upon La doping. TEM revealed the formation of cubic-shaped QDs of CeO2, and the incorporation of La decreased agglomeration. UV-vis absorption spectra showed a red shift upon La doping, assigned to a decrease in band gap energy. 6% La-doped CeO2 showed significant antibacterial activity against Escherichia coli at higher concentrations in comparison to ciprofloxacin. La-CeO2 was proposed as a putative inhibitor of β-lactamase E.coli and DNA gyrase E.coli relying on the outcomes of a molecular docking analysis that was in improved accord with in vitro bactericidal activity. Moreover, the prepared QDs exhibited a remarkable photocatalytic degradation of methylene blue in a basic medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call