Abstract

Superfluidity--liquid flow without friction--is familiar in helium. The first evidence for 'supersolidity', its analogue in quantum solids, came from torsional oscillator measurements involving 4He. At temperatures below 200 mK, the torsional oscillator frequencies increased, suggesting that some of the solid decoupled from the oscillator. This behaviour has been replicated by several groups, but solid 4He does not respond to pressure differences, and persistent currents and other signatures of superflow have not been seen. Both experiments and theory indicate that defects are involved; these should also affect the solid's mechanical behaviour. Here we report a measurement of the shear modulus of solid 4He at low frequencies and strains. We observe large increases below 200 mK, with the same dependence on measurement amplitude, 3He impurity concentration and annealing as the decoupling seen in the torsional oscillator experiments. We explain this unusual elastic behaviour in terms of a dislocation network that is pinned by 3He at the lowest temperatures but becomes mobile above 100 mK. The frequency changes in the torsional oscillator experiments appear to be related to the motion of these dislocations, perhaps by disrupting a possible supersolid state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call