Abstract
Abstract Damage to polymer adhesives is one of the most common reasons for structural integrity damage of composite solid propellants. The introduction of self-repairing technology into the adhesive is expected to solve this problem. However, at low temperatures, the self-repairing and mechanical properties of the materials are greatly impaired, thereby limiting the application of self-repairing adhesives in composite solid propellants. In this study, based on the dual synergistic crosslinking strategy, a polyurethane adhesive exhibiting excellent self-healing and mechanical properties at low temperatures was successfully prepared. The adhesive exhibited high self-repairing efficiency and ultra-long elongation at break at low temperatures. Specifically, at a low temperature of −40°C, the self-repair efficiency was over 70% and the elongation at break was over 1,400%, which were much higher than the results of the control group. Moreover, the strength was comparable to that of the control group. This polyurethane adhesive shows excellent self-healing and mechanical properties at low temperatures and is expected to provide the strong self-healing ability and mechanical properties for composite solid propellants, alleviating the problem of structural integrity damage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have