Abstract
The synthesis process of conventional Mn-based denitrification catalysts is relatively complex and expensive. In this paper, a resource application of chlorella was proposed, and a Chlorella@Mn composite denitrification catalyst was innovatively synthesized by electrostatic interaction. The Chlorella@Mn composite denitrification catalyst prepared under the optimal conditions (0.54 g/L Mn2+ concentration, 20 million chlorellas/mL concentration, 450°C calcination temperature) exhibited a well-developed pore structure and large specific surface area (122 m2/g). Compared with MnOx alone, the Chlorella@Mn composite catalyst achieved superior performance, with ∼100% NH3 selective catalytic reduction (NH3-SCR) denitrification activity at 100-225°C. The results of NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR) showed that the catalyst had strong acid sites and good redox properties. Zeta potential testing showed that the electronegativity of the chlorella cell surface could be used to enrich with Mn2+. X-ray photoelectron spectroscopy (XPS) confirmed that Chlorella@Mn had a high content of Mn3+ and surface chemisorbed oxygen. In-situ diffuse reflectance infrared Fourier transform spectroscopy (in-situ DRIFTS) experimental results showed that both Langmuir-Hinshelwood (L-H) and Eley-Rideal (E-R) mechanisms play a role in the denitrification process on the surface of the Chlorella@Mn catalyst, where the main intermediate nitrate species is monodentate nitrite. The presence of SO2 promoted the generation and strengthening of Brønsted acid sites, but also generated more sulfate species on the surface, thereby reducing the denitrification activity of the Chlorella@Mn catalyst. The Chlorella@Mn composite catalyst had the characteristics of short preparation time, simple process and low cost, making it promising for industrial application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.