Abstract

AbstractIn recent years, remarkable progress has been made in improving the power conversion efficiency of perovskite solar cells, but their long‐term stability is not so optimistic. In response to this, ion engineering, interface engineering, and encapsulation engineering have been used to enhance the long‐term stability of solar devices. Here, a double‐layer water vapor barrier consisting of SiAlxOy buffer layer and SiO2 vapor isolation layer, prepared by atomic layer deposition under 100 °C, is demonstrated. SiAlxOy layer provides sufficient self‐limiting reactive sites for the deposition of SiO2, so that a more uniform and dense vapor isolation layer can be deposited. This double‐layer water vapor barrier can effectively isolate water vapor to erode the internal functional layers of the perovskite device, prevent ion migration, and improve the long‐term stability of the device. Moreover, the SiAlxOy/SiO2 barrier can be conducive to the transfer of charge between interfaces, and further enhances the conversion efficiency of the device. Overall, compared with the control device, the conversion efficiency of the perovskite device with a double‐layer water vapor barrier is increased from 17.08% to 19.16%, and the long‐term stability is significantly improved, which can maintain 92% efficiency for 2400 h under 35% humidity at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.