Abstract

AbstractOrganic emitters that exhibit room‐temperature phosphorescence (RTP) in neat films have application potential for optoelectronic devices, bio‐imaging, and sensing. Due to molecular vibrations or rotations, the majority of triplet excitons recombine rapidly via non‐radiative processes in purely organic emitters, making it challenging to observe RTP in amorphous films. Here, a chemical strategy to enhance RTP in amorphous neat films is reported, by utilizing through‐space charge‐transfer (TSCT) effect induced by intramolecular steric hindrance. The donor and acceptor groups interact via spatial orbital overlaps, while molecular motions are suppressed simultaneously. As a result, triplets generated under photo‐excitation are stabilized in amorphous films, contributing to phosphorescence even at room temperature. The solvatochromic effect on the steady‐state and transient photoluminescence reveals the charge‐transfer feature of involved excited states, while the TSCT effect is further experimentally resolved by femtosecond transient absorption spectroscopy. The designed luminescent materials with pronounced TSCT effect show RTP in amorphous films, with lifetimes up to ≈40 ms, comparable to that in a rigid polymer host. Photoluminescence afterglow longer than 3 s is observed in neat films at room temperature. Therefore, it is demonstrated that utilizing intramolecular steric hindrance to stabilize long‐lived triplets leads to phosphorescence in amorphous films at room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.