Abstract

Low-spin complexes of iron(III) chiroporphyrin, obtained from (1R)-cis-caronaldehyde acid methyl ester and pyrrole as the atropisomer, with R-imidazoles and cyanide have been studied by means of 1D and 2D (1)H NMR spectroscopy. A complete spectral assignment of resonances has been done on the basis of observed scalar, NOE, and EXSY correlations in 2D COSY and NOESY experiments. The chemical shift of beta-H pyrrole resonances have been used as a sensitive probe of electronic state of iron(III) metal ion. Cyanide anion coordination both in methanol and methylene dichloride results in formation of bis(cyanide) low-spin complexes with the rare (d(xz)(),d(yz)())(4) (d(xy)())(1) electronic ground state, revealed by pyrrole beta-H resonances at 11.12 and 10.56 ppm at 293 K, whereas imidazole and 1-methylimidazole produce the bis-ligated complexes with the (d(xy)())(2)(d(xz)(),d(yz)())(3) ground state. In case of sterically hindered imidazole derivatives, i.e., 2-methylimidazole and 1,2-dimethylimidazole, two rotational isomers have been observed at 293 K. Both electronic configurations contribute to the ground state of metal ion for the latter. The steric bulkiness of 2-methylimidazole (or 1,2-dimethylimidazole) is required to freeze a favorable configuration, even at room temperature, providing the perpendicular orientation of two imidazole planes which seems to be instrumental in the stabilization of the rare (d(xz)()d(yz)())(4)(d(xy)())(1) electronic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.